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Extrapolation and the Bulirsch-Stoer algorithm
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The Bulirsch-Stoer extrapolation algorithm was used in a statistical mechanics setting in 1984 by Henkel
and Patkos. Since then it has been used numerous times in a large variety of settings to extrapolate from finite
size systems to the infinite system in a large variety of situations in statistical mechanics. We investigate some
of its characteristics by using it in situations where the behavior of the infinite system is known. One charac-
teristic is the error involved with the algorithm. More importantly we investigate the dependence of the
effectiveness of the algorithm on the size and number of systems used as input and find that a larger number
of smaller systems results in better results than a few much larger systems.
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I. INTRODUCTION

In statistical mechanics one generally is interested in
behavior of a system in the thermodynamic limit, that
when the size of the system is allowed to go to infinity.
many cases of course one cannot find the quantities of in
est in this limit so an approach is taken whereby finite s
tems are studied and then one attempts to extrapolate to
thermodynamic limit. A number of algorithms for doing th
have been used and many are very thoroughly reviewed
Guttmann@1#. Just about the time of publication of Gut
mann’s review article Henkel and Patkos@2# introduced an
algorithm, originally due to Bulirsch and Stoer@3# and here-
after to be referred to as the BST algorithm, into the area
critical phenomena. In Guttmann’s review article this alg
rithm was mentioned and described ‘‘as fair to middling’’
comparison to other methods but results using the BST a
rithm were not presented in the same manner as the resu
seven other algorithms were, because one would supp
the BST algorithm’s almost concurrent introduction with t
review. Shortly after the introduction of the algorithm He
kel and Schu¨tz @4# pointed out several characteristics of t
algorithm and in particular stressed its being superior to
algorithm due to van den Broeck and Schwartz@5#, hereafter
to be referred to as the VBS algorithm, which was introduc
into statistical mechanics by Hamer and Barber@6# and
which was one of the approaches reviewed by Guttmann

Since the introduction of the BST algorithm there ha
been a number of topics where use is made of it to t
results for a series of finite size systems and extrapolat
the infinite system. Examples of such are quite varied
include the tricritical point and the phase diagram of a c
lapsing lattice animal@7#, layered magnetic systems@8,9#,
polymers with crossing bonds@10#, density profiles, Casimir
amplitudes, critical exponents, corner exponents, and the
cation of the Lee-Yang zeros all for two-dimensional Po
models@11–14#, critical temperature, critical exponent an
correction to scaling estimates for two- and thre
dimensional Ising models@15–18#, magnetizations plateau
in antiferromagnetic Heisenberg spin-1/2 ladders@19#, and
interacting, oriented, self-avoiding walks@20#. While there
has been much use of the algorithm there has been
1063-651X/2002/65~6!/066116~8!/$20.00 65 0661
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analysis of the characteristics of the algorithm in situatio
where one knows the dependency of the infinite system
the finite systems and one can thereby check some of
characteristics of the algorithm.

We present such a study of the algorithm in the followin
Specifically in the next section we introduce the algorith
and present a number of questions relevant to its use.
lowing that section we examine the BST algorithm in a s
ting similar to one of its most common uses listed above t
of partition function zeros. However, we investigate its b
havior in the extrapolation of results for finite one
dimensional systems to the infinite system. The obvious
vantage is that we have numerous analytic results involv
various expansions of quantities in terms of the size of
system available to us for the one-dimensional system
not for higher dimensional systems. In Sec. IV we see
some of our findings from Sec. III carry over to the tw
dimensional Ising model. Since in some respects the o
dimensional model is rather pathological, e.g., having
phase transition only when the temperature is zero, i
worth seeing if some of our conclusions based on the o
dimensional model are also true for the two-dimensio
case. But here again we are in a situation where at least s
exact results are available such as the critical tempera
which will allow us to see the accuracy and efficiency of t
algorithm.

II. BASIC METHOD

In general we wish to determine the value of some qu
tity we will denote asT of an infinite statistical mechanica
system by knowing the corresponding values ofT for several
finite systems. Since the value ofT for the finite systems will
depend on the size of the system we denote them asT(L)
whereL is a measure of the system size. One suppose
general thatT(L) can be written as

T~L !5T`1a1L2v11a2L2v21a3L2v31•••, ~1!

where 0,v1,v2,v3,••• and where T` is the
value for the infinite system. The BST algorithm allow
©2002 The American Physical Society16-1
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JAMES L. MONROE PHYSICAL REVIEW E 65 066116
one to start with a finite sequence of valu
T(L1),T(L2),T(L3), . . . ,T(Lp) and estimateT` . In par-
ticular the algorithm allows one to construct a table of e
trapolants of this sequence, e.g., forp55 we have

T0
1

T1
1

T0
2 T2

1

T1
2 T3

1

T0
3 T2

3 T4
1

T1
3 T3

2

T0
4 T2

3

T1
4

T0
5 ~2!

whereT4
1 is the algorithm’s best estimate forT` . TheTq

n are
computed from

T21
n 50, ~3!

T0
n5Tc~n!, ~4!

Tm
n 5Tm21

n11 1~Tm21
n11 2Tm21

n !

3F S Ln

Ln1m
D vS 12

Tm21
n11 2Tm21

n

Tm21
n11 2Tm22

n11 D 21G21

, ~5!

wherem>1 and wherev is a free parameter.
Henkel and Schutz@4# in their investigation of the prop

erties of the algorithm generally looked at the comparis
between the VBS algorithm@6# and the results it produce
compared to the BST algorithm and the results it produc
We concentrate solely on the BST algorithm which based
their results is superior to the VBS algorithm. The most i
portant questions we consider in the following center on
very practical issue of how to get the best results from
algorithm taking into account that computing the input v
ues is generally very difficult and time consuming. One ty
cal question concerns how the accuracy of the estim
given by the BST algorithm depend on the size of the s

tems used to generate the input, i.e., theT0
n8s? As an example

one might ask if one could compute input data for 13 s
tems of sizeL53,5,7, . . . ,27 oronly 7 systems but of large
size, sayL52,8,14,20, . . . ,38, as we do in the next section
would the estimate based on the input values from the la
systems result in a more accurate estimate or vice ve
Generating data from 13 smaller systems is often easie
general than generating data using 7 larger systems. Sec
since when using the algorithm one is constantly subtrac
two quantities of near equal value such as (Tm21

n11 2Tm21
n )

how important is the accuracy of the original input? It
rather apparent that the accuracy is of importance and th
mentioned in Ref.@1# but we give some very clear and sp
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cific examples which can be used to give some guidance
the level of accuracy necessary. Finally we want to inve
gate the ways in which the error involved in a particular BS
estimate may be gauged, in particular we investigate a p
cedure which has been used by several authors for estima
the error. This method relies upon the use of the abso
value of the difference between the two values at the nex
last level of approximation, in particular we take as our e
timate for errore to be

e5uTm22
2 2Tm22

1 u ~6!

when there arem input values.
In Ref. @5# a good deal of the work involved test function

of the form of Eq.~1! but with only a term or two on the
right-hand side. As they point out this is seldom the case
statistical mechanics applications. We consider Ising mo
systems which are governed by the Hamiltonian

H52J(
^ i , j &

s is j2h(
i

s i , ~7!

where the variables i denotes the spin variable on thei th
site, eachs can take on the values61, the first sum is over
all nearest-neighbor pairs, and the later sum is over all s
variables comprising the system.J is the nearest-neighbo
interaction andh is the external magnetic field. The partitio
function for such a system is

Z5(
$s%

exp@2bH#, ~8!

whereb51/kT, and the sum is over all configurations of th
system, a configuration being denoted by$s%. The partition
function can be written as a generalized polynomial, an
pression where negative exponents are allowed, ofz and u
where u[exp@24bJ# and z[exp@2bh#. One then can find
the zeros of the polynomial considering eitheru or z as the
variable. When we wish to consideru as the variable we will
always takeh to be zero. The zeros in this case are refer
to as the Fisher zeros as these were first studied by Mic
Fisher@21#. When considering the opposite case, i.e., tak
z as the variable, the zeros will be referred to as the L
Yang zeros after the two authors whose work started
considerations of the zeros of the partition function@22#.

III. ONE-DIMENSIONAL ISING MODEL CASE

In this section we consider all Ising spins to lie along
line and we consider the case where we have periodic bou
ary conditions. The partition function can be found using t
two eigenvalues of the 232 transfer matrix for the system
The partition function for a system ofN sites is the sum of
the two eigenvalues each raised to theNth power. Setting
this sum equal to zero one obtains

z1
1

z
52~12u!cosS 2g21

N
p D22u, ~9!
6-2
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TABLE I. Absolute value of the difference between the exact value and the BST algorithm estimate for the argument ofu1 and estimate
of the error based on Eq.~9! whenu5(1/2)4, v52, and system sizes used are 3,5, . . . ,2m11.

8 figure accuracy input 12 figure accuracy input 16 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of e

7 2.431027 2.431026 1.631027 4.731026 1.631027 4.731026

8 9.931028 1.431027 5.931029 1.531027 6.031029 1.531027

9 1.931027 1.531027 2.9310210 5.431029 1.2310210 5.631029

10 7.831028 1.131027 4.1310210 6.5310210 3.0310212 1.2310210

11 2.231027 1.731027 9.4310211 6.0310210 4.5310214 2.8310212

12 2.031026 1.531026 7.8310211 1.7310210 3.9310214 8.1310214

13 2.031027 2.031026 2.6310211 1.3310210 6.3310215 3.9310214
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whereg51,2, . . . ,N. Knowing that the Lee-Yang zeros fo
the case whereJ.0, which is the only case we conside
when dealing with the Lee-Yang zeros, lie on the unit cir
in the complexz plane, a result of the Lee-Yang circle the
rem @22#, thenz can be written asz5exp@iug# and therefore
their location is determined by the value ofug . We will be
interested only in the zero closest to the real, positive,z axis.
This zero is designated as the leading zero. There are a
ally two such zeros since the zeros come in complex co
gate pairs. These are the zeros one obtains wheng51 or g
5N. Using the above and takingg51 one can do a serie
expansion in the variable (1/N) for u1 and one obtains

u15arccos~122u!1
p2

4
A1

u
21S 1

ND 2

1
p4

192S 3

u
22DA1

u
21S 1

ND 4

1OS 1

ND 6

~10!

which is precisely of the form of Eq.~1!. Hence we have
from a statistical mechanical system an example of exa
the situation that the BST algorithm was designed to han
A further complication is the variableu which is present in
all coefficients on the right-hand side of Eq.~10!. As we will
see in the following the effectiveness of the BST algorithm
dependent on the value ofu. Finally we mention that given
the expansion in Eq.~10! we know we want to setv52 in
the BST algorithm.

Obviously from Eq. ~10! in the limit N→` then u1
5arccos(122u). We begin our study of the BST algorithm
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by taking as input a sequence ofm values, these values bein
the value of the argument ofu1 for systems of size
3,5, . . . ,2m11 sites. We then apply the BST algorithm
these m input values obtaining an approximation for th
value of the argument of this zero in the infinite site lim
We do this for two different values ofu. We are interested in
the accuracy of the BST estimates and the easiest way to
this accuracy is to look at the absolute value of the differe
between the exact value and the BST estimate. This for v
ous values ofm are given in Table I foru5(1/2)4 and in
Table II for u5(1/4)4. In both cases we have presented
sults using 8 figure, 12 figure, and 16 figure accuracy inp
Also in these tables we have presented estimates of the e
using Eq.~8!, involved in our approximation for again th
case of the three varying input accuracies.

First we address the issue of the accuracy of the estim
In theu5(1/2)4 case even for our smallest sequence of in
values, m57, eight figure accuracy is insufficient. Als
Table I shows that while form58 there is little difference
between the outcome of using 12 figure as opposed to
figure accuracy all longer sequences require 16 figure a
racy. With eight figure accuracy for the input the accuracy
the estimate is basically random. In fact the accuracy
tained with seven input values is virtually the same as t
using 13 input values. Table I shows that the most accu
estimate with this input is obtained withm510. However,
from Table I one sees very clearly that with 16 figure acc
racy for the input values one first of all gains significantly
overall accuracy of the output except when only seven in
values are used and that the increase in the number of i
rror
TABLE II. Absolute value of the difference between the exact value and the BST algorithm estimate for the argument ofu1 and estimate
of the error based on Eq.~9! whenu5(1/4)4, v52, and system sizes used are 3,5, . . . ,2m11.

8 figure accuracy input 12 figure accuracy input 16 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of e

7 1.931023 3.931023 1.931023 3.931023 1.931023 3.931023

8 5.831024 1.331023 5.831024 1.331023 5.831024 1.331023

9 1.431024 3.931024 1.331024 4.031024 1.331024 4.031024

10 7.731026 1.331024 3.131025 9.731025 3.131025 9.731025

11 2.331025 1.631025 5.731026 2.331025 5.731026 2.331025

12 2.031025 2.631026 1.031026 4.431026 1.031026 4.431026

13 2.531025 4.931026 1.231027 8.631027 1.531027 8.331027
6-3
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TABLE III. Absolute value of the difference between the exact value and the BST algorithm estimate for the argument ofu1 and estimate
of the error based on Eq.~9! whenu5(1/4)4, v52, and system sizes used are 3,9, . . . ,6m23.

8 figure accuracy input 12 figure accuracy input 16 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of e

7 1.131025 1.231024 1.031025 1.131024 1.031025 1.231024

8 1.231026 8.831026 7.831027 9.531026 7.831027 9.531026

9 1.131026 2.231026 3.831028 7.231027 3.831028 7.231027

10 3.331027 1.531026 2.131029 3.631028 1.831029 3.631028

11 1.331027 1.931027 4.8310210 2.531029 6.2310211 1.831029

12 4.731027 4.131027 4.8310210 9.9310210 2.0310212 6.0310211

13 1.931027 6.431027 1.4310211 4.5310210 1.3310213 1.9310212
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values corresponds to a very systematic increase in the a
racy of the final result of using the BST algorithm. To sum
marize for eight figure input accuracy one gets an estim
for the argument of the zero closest to the real, positivez axis
of six figure accuracy regardless if one uses seven input
ues or 13 input values but if one goes to 16 figure accur
input one sees a gradual increase in output accuracy from
BST algorithm from six figures to 14 figures, a pickup
eight orders of magnitude. In addition if one considers
figure accuracy of the input~not shown in Table I! then the
BST algorithm for 13 input values will further increase th
accuracy to 16 figures a pickup of two more orders of m
nitude. Further increases in the input accuracy has no e
on the output accuracy as we are now limited by the num
of input values, i.e., the size of the systems being used
approximate the infinite system.

The same basic characteristics are illustrated in Tabl
for the case whereu5(1/4)4. Here, however, our results d
not have anywhere near the same level of accuracy as t
of Table I due to the simple fact that the coefficients in t
series expansion in Eq.~10! are larger for this value ofu and
hence the infinite system result is harder to approximate,
larger systems must be included to obtain the same leve
accuracy achieved in Table I. Because of the greater d
culty in the approximation for this value ofu the impact of
the accuracy of the input is not seen until ten or more in
values are used and there is never any substantial differ
between the results obtained by 16 figure accuracy in
when compared to 12 figure accuracy input. Going to e
larger accuracy for the input results in no gain as it is ag
the size of the systems which are the limiting factor.

As far as the estimation of the error from the results p
sented in Tables I and II we see with eight figure accur
input that both foru5(1/2)4 andu5(1/4)4 that only about
1/2 of the time asm runs from 7 to 13 is the estimate of th
error large enough. However, for 16 figure accuracy the
timate of the error is always large enough. Therefore giv
sufficiently accurate input the estimate6 the error is such
that it produces an interval in which the exact value falls a
the interval is generally not so large as to imply much le
accuracy than is actually achieved.

We now look at the issue of the size of the systems be
considered versus the number of systems being cons
Specifically the issue we wish to address can be phrase
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Is it better to obtainm input values from smaller systems o
to obtain a smaller number, saym2p, input values but for
generally larger systems? We can address this issue for
system because we can easily obtain the argument ofu1 for
any system size.

Specifically we will for u5(1/4)4 consider a new serie
of finite lattice systems given by 3,9, . . . ,6m23 wherem is
then the number of input values for a given sequence
system sizes. We again will consider sequences of from
13 values hence we will consider systems with as many a
sites. The results for this is given in Table III. We again s
very clearly the impact of the accuracy of the input valu
even at the level of eight input values. First for eight figu
accuracy input the accuracy of the estimates is almost
dom as the length of the sequence is increased. For 12 fi
accuracy input there is a gain in overall accuracy as wel
at least up tom512 sequence a systematic increase in
accuracy of the estimate as the value of m increases.
even 12 figure accuracy is not adequate for 13 input val
where one see that going from 12 figure input accuracy to
figure input accuracy results in two orders of magnitu
more accurate estimates. Furthermore an additional orde
magnitude increase in the accuracy of the estimate
achieved for them513 case if one goes to 22 figure acc
racy of the input. Also for the most accurate input the es
mate of the error given by Eq.~9! is sufficient to guarantee
the estimate6 the error estimate includes the exact value

Obviously we also see an increase in the accuracy of
estimates given by the BST algorithm when comparing
any given value ofm the estimate from Table II to that o
Table III. But to answer the question raised in the earl
paragraph we want to compare estimates from Tables II
III between differing sequence lengths. This can best be d
graphically and is done so in Fig. 1. Here we plot as a fu
tion of m, the number of input values, the logarithm of th
absolute value of the difference between the BST estim
for the argument ofu1 for the infinite system and the exac
value. This is done both for the results from Table II a
Table III. From Fig. 1 one sees that the result from Table
involving 13 input values is more accurate than either
results from the 3,9, . . . ,39 and3,9, . . . ,45site series de-
spite the fact that the largest system involved with the
input value sequence of Table II consists of only 27 sit
6-4
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EXTRAPOLATION AND THE BULIRSCH-STOER ALGORITHM PHYSICAL REVIEW E65 066116
Even the sequences involving 11 and 12 input values fr
Table II, which respectively have a largest system size of
and 25 sites, produce better estimates than the seven
quence input from Table III which involves three larger sy
tems, i.e., systems of 27, 33, and 39 sites. While in the c
of the one-dimensional Ising model one can directly cal
lateu1 for any size system in general applications going t
system with even one more lattice site may double
amount of work necessary to get an input value, e.g., in
direct calculation of a partition function by summing ov
the states adding a single Ising spin doubles the numbe
configurations one must sum over.

The above shows the important point that it can be be
to consider more smaller system sizes than a few larger
tem sizes. In the following section we look at the tw
dimensional square lattice Ising system to see if this re
holds at larger dimensions.

IV. TWO-DIMENSIONAL ISING MODEL CASE

For the two-dimensional Ising model on the square latt
analytic results like those found for the one-dimensional s
tem are unavailable but we do have Onsager’s exact re
locating the critical temperature and hence where the lo
of zeros cross the positive real axis in any appropriate pl
involving a complex temperature. Hence we will look only
the Fisher zeros in this case and consider only the case w
h50. Several authors, notably Alveset al. @15#, Creswick
@16#, and Bhanot@17#, have used the BST algorithm on th
Fisher zeros of the two-dimensional, square lattice, Is
model to approximate the critical temperature, the criti
exponentn, and corrections to scaling. Specifically we w
consider the partition function zeros in the complexu plane.
We want to look at some of the same aspects of the B
algorithm used on this system as was done in the prev
section for the one-dimensional case. In particular we w
to contrast the outcome using fewer but larger system s
with more but smaller systems.

Again the accuracy to which we know the imaginary a
real parts of the leading zero will be crucial. The partiti
function can be written as a polynomial inu. Luckily for this
model Kaufmann@23# has produced an exact closed for

FIG. 1. Log ~accuracy of estimate! vs m plot for estimates of
leading Lee-Yang zero of one-dimensional Ising model.
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expression allowing one to calculate the partition functi
for a generalm3n site system with periodic boundary con
ditions. Furthermore, Beale@24# using Kaufmann’s expres
sion has placed on the Internet aMATHEMATICA program
which computes the partition function for such a syste
Alves et al. @15# were aware of this but state that preci
computation of the zeros for large systems, e.g., of size
364 sites, is nevertheless unfeasible. They point out vari
numerical problems in determining the zeros of the partit
function especially when considering relatively large lattic
They also point out that prior to their paper a number
studies have been presented, two being Refs.@16# and @17#,
looking at the critical properties of the two-dimensional sy
tem using the behavior of the leading zeros but all of th
were limited to lattices no larger than 13313 sites. In order
to consider larger systems they develop a method to appr
mate the leading zero using methods from lattice ga
theory and were able to consider systems as large as
364 sites. Their method is iterative in nature and could
proximate the zeros to arbitrary accuracy in theory while
actual implementation the time required will certainly lim
the computation. Specifically they obtained the real a
imaginary parts of the leading zeros to only ten figure ac
racy. By ‘‘leading’’ zero we mean again as in the on
dimensional case the zero whose argument is closest to
in value.

For our input data into the BST algorithm we have us
Beale’s MATHEMATICA program to generate the partitio
function and then with our ownMATHEMATICA programs
computed the Fisher zeros for systems up to and includin
30330 site system. We have used the arbitrary precis
allowed by MATHEMATICA and for the computation of the
zeros the 30330 site system have used 400 figure accura
For completeness and to allow others to perhaps try o
extrapolation algorithms on our data we present in Table
the leading zeros to 34 figure accuracy for systems of s
434, 535, 636, . . . , 30330. It should be pointed ou
that all our calculations were performed on a personal co
puter running at 1.7 GHz and for the largest system wh
we obtained all zeros, the 28328 system, it took approxi-
mately 12 h runningMATHEMATICA programs for this sys-
tems at 260 figure accuracy. Actually we can go well beyo
the 28328 system size if we are only interested in the lea
ing, Fisher zero and for systems of size 29329 sites and
30330 sites this is what was done. The time required to
the leading zero for the 30330 system requires less than
min including generation of the partition function and th
memory requirements are negligible. Therefore if needed
computations could certainly be extended to significan
larger systems, however, much of our interest here center
showing the interplay between the system size and the n
ber of systems used. Once again we will see by using
results of Alveset al. @15# who considered systems as larg
as 64364 BST estimates based on using smaller systems
more of them are often more accurate than can be obta
using data from the larger systems of reference.

The estimation ofuc , the critical exponentn, and correc-
tions to scaling are all based on the finite size scaling res
6-5
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TABLE IV. Real and imaginary part ofu0 system sizesL3L of the two-dimensional Ising model.

L3L Re(u0) Im(u0)

636 0.1756913615573711016305548862308596 0.10528348724565994787378078120
737 0.1773627857761477873797569589312878 0.08900625809878365207707381088
838 0.1780809274807217478864106823995287 0.07710375571859840823196605520
939 0.1783370199817459372711424676089029 0.06801661701229172187622691018

10310 0.1783571853666583091393157025599633 0.06084948477969045257452302555
11311 0.1782541389593520937301517561711766 0.05505096371006008106733171803
12312 0.1780873238696294859636981113120588 0.05026266795690422238961891903
13313 0.1778893450966634697569911629316706 0.04624145356375805315485090249
14314 0.1776785449249190548627500277542951 0.04281649121622217969216131425
15315 0.1774653671315838089029894554262255 0.03986421637638012018294978025
16316 0.1772557409000967785605727807340487 0.03729302674155069833522141561
17317 0.1770529534865744491328326611581594 0.03503356799760033272244700559
18318 0.1768587208845992776495534868567471 0.03303236187478630182322752204
19319 0.1766738164020039662539711416167222 0.03124750680583837636622727552
20320 0.1764984476280063003871226068726472 0.02964570467921901895809107900
21321 0.1763324862757432509525843900123733 0.02820015958955516896307201692
22322 0.1761756100083881916538388782914137 0.02688906399403547465887719236
23323 9.1760273905904262137679574340675251 0.02569448914945364282960995168
24324 0.1758873487833546137042136938013663 0.02460155919288038906316834895
25325 0.1757549883731927444782228722113847 0.02359782770153706245275070090
26326 0.1756298169762764720801923282311223 0.02267280107627923764921341551
27327 0.1755113584142179019137046659793238 0.02181756992097064653375986537
28328 0.1753991596978105929798960022063834 0.02102452090076385688342966841
29329 0.1752927945687249795513768257894871 0.02028710929560394031194939636
30330 0.1751918648586569730235955176049097 0.01959967783597390122756411622
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of Itzykson, Pearson, and Zuber@25#. They show foru0, the
leading zero, that

u0~L !5uc1AL21/n@11O~L2v!#, ~11!

wherev.0 and is the correction to scaling exponent. A
cording to Creswick@17# one can write separate expressio
for the real and imaginary parts ofu0(L) of the form

Re@u0~L !#5uc1BL21/n@11O~L2v!# ~12!

and

Im@u0~L !#5CL21/n@11O~L2v!#. ~13!

Alternately only can use the absolute value ofu0(L). We
have used the real, imaginary, and absolute values of
u0(L) as input into the BST algorithm and they all giv
06611
-

he

similar results. In the following the specific values we
found using the absolute value.

Using as input into the BST algorithm the real part of t
ten figure accuracy zeros of Alveset al. @15# ~actually nine
digit accuracy with rounded errors in the tenth digit!, using
as many as 13 input values based on systems of size
312, 15315, 16316, 18318, 20320, 24324, 30330, 32
332, 36336, 40340, 48348, 60360, and 64364 sites
~the 13 largest systems looked at in Ref.@15#!, and withv
51, we have for uuc2uc* u values of 1.831027, 4.2
31029, 4.631029, 4.131029, and 8.831029 for a se-
quence of the 9, 10, 11, 12, and 13 systems, respectiv
Here uc* denotes the BST estimate. Because of the sm
accuracy in obtaining the values of the leading zero by Alv
et al. the use of the BST algorithm results in estimates wh
do not increase in accuracy as the length of the input
rror
TABLE V. Absolute value of the difference between the exact value and the BST algorithm estimate ofuc whenv51, and system sizes
used are 12,15, . . . ,3m19.

10 figure accuracy input 16 figure accuracy input 34 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of e

4 6.831026 6.831025 6.831026 6.831025 6.831026 6.831025

5 2.431027 3.731026 2.531027 3.731026 2.531027 3.731026

6 4.631029 1.431027 6.931029 1.531027 6.931029 1.531027

7 3.331027 8.831028 2.431029 5.731029 2.431029 5.731029
6-6
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TABLE VI. Absolute value of the difference between the exact value and the BST algorithm estimate ofuc whenv51, and system sizes
used are 12,14, . . . ,2m110.

10 figure accuracy input 16 figure accuracy input 34 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of e

5 5.031027 4.431026 4.431027 4.331026 4.431027 4.331026

6 2.431027 3.631027 2.231028 2.231027 2.231028 2.231027

7 1.831027 4.531027 7.631029 1.631028 7.631029 1.631028

8 1.431028 2.931028 6.4310210 4.931029 6.4310210 4.931029

9 4.331028 1.831028 4.7310211 3.0310210 4.4310211 3.0310210

10 1.231028 1.231027 3.3310211 8.2310212 5.1310211 4.6310212
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quence increases just as we saw with the one-dimensi
Lee-Yang zeros.

We now present our own attempts to estimateuc using the
leading Fisher zeros, Eq.~12!, and the BST algorithm with
v51. We use three different sequences of system sizes
vary the accuracy of the input as was done in the o
dimensional case. The sequences of system sizes arem
19)3(3m19), (2m110)3(2m110), and (m111)
3(m111). Again, as in the previous section,m will denote
the number of input values. Obviously withm51 all our
sequences will begin with the 12312 site system~the same
size system as started the 13 input sequence using the re
of Alves et al. @15#! and then increase by one, two, or thr
columns and rows, respectively. Our results for these
quences are presented in Tables V, VI, and VII.

Results for the short sequence of up to seven input va
are given in Table V and show that this sequence result
an accuracy comparable to that found using the above la
systems and that as to be expected while the ten figure i
accuracy results are somewhat erratic the 16 figure inpu
sults in steadily increasing accuracy as the sequenc
lengthened and that going beyond 16 figure input accur
results in no gain. The mid-length sequence with suffici
accuracy for the input gives better results than the ten fig
accuracy with system sizes to 64364 sites with the results
based on a nine and ten system sequence but with 1
better 34 figure input are approximately two orders of m
nitude better. Finally for the longer sequence using as m
as 17 systems results in no appreciable gain over the m
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length sequence although obviously it is again in general
orders of magnitude better than the sequence using the la
systems of Alveset al. @15#.

Again the errors as given by Eq.~6! are generally conser
vative estimates but not quite with the regularity as seen
the one-dimensional case. While with sufficient accuracy
the input we generally have a systematic approach to
correct value given by the BST algorithm we do note that
very systematic approach to the correct value found for
one-dimensional case and clearly illustrated in Fig. 1 is
present, e.g., for our mid-length sequence the value obta
using a ten system sequence is slightly less accurate than
given by a nine system sequence. We suspect that this is
to the added complication that the Fisher zeros for the tw
dimensional system with periodic boundary conditions t
we are using so as to be able to use the results of Kaufm
and Beale do not fall on the locus of the zeros for the infin
system. This is not true for the zeros in the one-dimensio
case where both the Lee-Yang and the Fisher zeros are
any finite system on the same line they would be for
infinite system.

V. CONCLUSIONS

The above two examples show that not very surprisin
the accuracy of the input plays a major role in the accur
of the BST algorithm and that while not very surprising
may not be as fully appreciated as it needs to be. More
portantly the above two examples show that what one
rror
TABLE VII. Absolute value of the difference between the exact value and the BST algorithm estimate ofuc whenv51, and system
sizes used are 12,13, . . . ,m111.

10 figure accuracy input 16 figure accuracy input 34 figure accuracy input
m Accuracy of est. Estimate of error Accuracy of est. Estimate of error Accuracy of est. Estimate of e

7 6.531027 4.731027 5.531029 2.831029 4.931029 2.631029

8 5.831027 1.931027 5.2310210 4.931029 3.7310210 4.131029

9 5.631027 9.231027 5.8310210 2.3310211 3.7310210 9.8310213

10 9.231028 8.431027 5.2310210 8.5310210 3.7310210 2.0310210

11 5.231028 7.731028 8.5310211 3.0310210 2.0310211 5.131029

12 3.531027 1.131027 1.9310210 8.7310211 2.4310211 2.3310211

13 7.031028 7.731027 9.2310211 3.5310211 6.2310212 1.5310211

14 3.531027 1.031027 2.2310210 1.3310210 2.5310211 3.9310212

15 5.831028 3.531027 5.8310211 3.9310212 2.8310211 2.031029
6-7
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obtain with a slightly larger number of small systems may
greater than what one can get out of a smaller numbe
larger systems. This is of course of importance due to
fact that in all the cases mentioned in the introduction s
nificantly greater effort may be needed to increase the siz
the system even just slightly.
a
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